Morphology, development and plant architecture of M. truncatula

نویسنده

  • Delphine Moreau
چکیده

A M. truncatula plant is made up of (1) a main axis that can organize either in a rosette (i.e. the leaves are at the level of the neck with very short internodes) or as an elongated axis; and (2) branches of different orders (e.g. primary, secondary, tertiary, branches). Plant morphology and architecture strongly vary between genotypes and are very dependent upon environmental and cultural conditions (Aitken 1955). For instance, when A17 plants are cultivated with a high plant density or with low radiations, the main axis is elongated and only very few branches are formed (erect plant). By contrast, when they are grown with a low plant density, the main axis organizes in a rosette and numerous branches develop (prostrate plant).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Genetic diversity of cultivated chickpea (Cicer arietinum L.) using Medicago truncatula EST-SSRs

Expressed sequence tags simple sequence repeats (EST-SSRs) are important sources for investigation of genetic diversity and molecular marker development. Similar to genomic SSRs, the EST-SSRs are useful markers for many applications in genetics and plant breeding such as genetic diversity analysis, molecular mapping and cross-transferability across related species and genera. In spite of low po...

متن کامل

Control of dissected leaf morphology by a Cys(2)His(2) zinc finger transcription factor in the model legume Medicago truncatula.

Plant leaves are diverse in their morphology, reflecting to a large degree the plant diversity in the natural environment. How different leaf morphology is determined is not yet understood. The leguminous plant Medicago truncatula exhibits dissected leaves with three leaflets at the tip. We show that development of the trifoliate leaves is determined by the Cys(2)His(2) zinc finger transcriptio...

متن کامل

Medicago truncatula CRE1 cytokinin receptor regulates nodulation and lateral root development.

The plant hormone cytokinin is implicated in the control of root architecture and development, including legume root nodulation. Gonzalez-Rizzo et al. (pages 2680–2693) identified a Medicago truncatula homolog of Arabidopsis, CYTOKININ RESPONSE1 (CRE1), which encodes a cytokinin receptor histidine kinase, and made use of RNA interference of Mt CRE1 to investigate the role of cytokinin in the no...

متن کامل

IN BRIEF Medicago truncatula CRE1 Cytokinin Receptor Regulates Nodulation and Lateral Root Development

The plant hormone cytokinin is implicated in the control of root architecture and development, including legume root nodulation. Gonzalez-Rizzo et al. (pages 2680–2693) identified a Medicago truncatula homolog of Arabidopsis, CYTOKININ RESPONSE1 (CRE1), which encodes a cytokinin receptor histidine kinase, and made use of RNA interference of Mt CRE1 to investigate the role of cytokinin in the no...

متن کامل

STM/BP-Like KNOXI Is Uncoupled from ARP in the Regulation of Compound Leaf Development in Medicago truncatula.

Class I KNOTTED-like homeobox (KNOXI) genes are critical for the maintenance of the shoot apical meristem. The expression domain of KNOXI is regulated by ASYMMETRIC LEAVES1/ROUGHSHEATH2/PHANTASTICA (ARP) genes, which are associated with leaf morphology. In the inverted repeat-lacking clade (IRLC) of Fabaceae, the orthologs of LEAFY (LFY) function in place of KNOXI to regulate compound leaf deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006